首页> 外文OA文献 >Improving Sparse Representation-Based Classification Using Local Principal Component Analysis
【2h】

Improving Sparse Representation-Based Classification Using Local Principal Component Analysis

机译:利用局部优化改进基于稀疏表示的分类   主成分分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sparse representation-based classification (SRC), proposed by Wright et al.,seeks the sparsest decomposition of a test sample over the dictionary oftraining samples, with classification to the most-contributing class. Becauseit assumes test samples can be written as linear combinations of theirsame-class training samples, the success of SRC depends on the size andrepresentativeness of the training set. Our proposed classification algorithmenlarges the training set by using local principal component analysis toapproximate the basis vectors of the tangent hyperplane of the class manifoldat each training sample. The dictionary in SRC is replaced by a localdictionary that adapts to the test sample and includes training samples andtheir corresponding tangent basis vectors. We use a synthetic data set andthree face databases to demonstrate that this method can achieve higherclassification accuracy than SRC in cases of sparse sampling, nonlinear classmanifolds, and stringent dimension reduction.
机译:Wright等人提出的基于稀疏表示的分类(SRC)在训练样本字典上寻求测试样本的最稀疏分解,并将分类归类为贡献最大的类别。因为它假定测试样本可以写成它们相同类训练样本的线性组合,所以SRC的成功取决于训练集的大小和代表性。我们提出的分类算法通过使用局部主成分分析来近似训练每个训练样本上的类的切线超平面的基向量来扩大训练集。 SRC中的字典被适合于测试样本的本地词典替换,并且包含训练样本及其对应的切线基向量。我们使用综合数据集和三个人脸数据库来证明,在稀疏采样,非线性类流形和严格降维的情况下,该方法比SRC具有更高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号